If $(1 -x + x^2)^n = a_0 + a_1x + a_2x^2 + ....... + a_{2n}x^{2n}$, then $a_0 + a_2 + a_4 +........+ a_{2n}$ is equal to
$\frac{1}{2} (3^n+1)$
$\frac{1}{2} (3^n-1)$
$\frac{1}{2} (1-3^n)$
$\frac{1}{2} +3^n$
The sum, of the coefficients of the first $50$ terms in the binomial expansion of $(1-x)^{100}$, is equal to
The sum of last eigth coefficients in the expansion of $(1 + x)^{15}$ is :-
If the number of terms in the expansion of ${\left( {1 - \frac{2}{x} + \frac{4}{{{x^2}}}} \right)^n},x \ne 0$ is $28$ then the sum of the coefficients of all the terms in this expansion, is :
The value of $-{ }^{15} C _{1}+2 .{ }^{15} C _{2}-3 .{ }^{15} C _{3}+\ldots \ldots$ $-15 .{ }^{15} C _{15}+{ }^{14} C _{1}+{ }^{14} C _{3}+{ }^{14} C _{5}+\ldots .+{ }^{14} C _{11}$ is
If $C_r= ^{100}{C_r}$ , then $1.C^2_0 - 2.C^2_1 + 3.C^2_3 - 4.C^2_0 + 5.C^2_4 - .... + 101.C^2_{100}$ is equal to