7.Binomial Theorem
hard

Suppose $\sum \limits_{ r =0}^{2023} r ^{20023} C _{ r }=2023 \times \alpha \times 2^{2022}$. Then the value of $\alpha$ is $............$

A

$1011$

B

$1013$

C

$1012$

D

$1014$

(JEE MAIN-2023)

Solution

using result

$\sum \limits_{r=0}^n r^{2 n} C_r=n(n+1) \cdot 2^{n-2}$

$=2023 \times \alpha \times 2^{2022} \text { So, }$

$\Rightarrow \alpha=1012$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.