સાદા લોલકથી ગુરુત્વાકર્ષી  પ્રવેગ $(g)$ માપવાના એક પ્રયોગમાં $1$ સેકન્ડ વિભેદન (રીઝોલ્યુશન) ધરાવતી ધડીયાળ વડે $100$ દોલનોનાં મપાયેલા સમયથી મળતો આવર્તકાળ $0.5$ સેકન્ડ છે. જો $1\,mm$ ચોક્કસાઈથી મપાયેલ લંબાઈ $10\,cm$ છે. $g$ ના માપનમાં મળતી ચોકકસાઈ $x \%$ છે. $x$ નું મૂલ્ય કેટલું હશે?

  • [JEE MAIN 2022]
  • A

    $4$

  • B

    $5$

  • C

    $3$

  • D

    $2$

Similar Questions

સાદા લોલકનો આવર્તકાળ $T=2\pi \sqrt {\frac{l}{g}} $ વડે આપવામાં આવે છે. $L$ નું $1\,mm$ ની ચોકસાઈથી મપાયેલ મૂલ્ય $20.0\,cm$ છે. અને તેનાં $100$ દોલનો માટે લાગતો સમયગાળો $90\;s$ છે, જેને $1\;s$ જેટલું વિભેદન ધરાવતી કાંડા ઘડિયાળ વડે માપવામાં આવે છે. $g$ શોધવામાં રહેલી ચોકસાઇ  ........ $\%$

  • [JEE MAIN 2015]

જો $Z =\frac{ A ^{2} B ^{3}}{ C ^{4}}$ હોય, તો $Z$ માં સાપેક્ષ ત્રુટિ ........... હશે. 

  • [JEE MAIN 2022]

સાદા લોલકનાં દોલનોનો આવર્તકાળ $T =2 \pi \sqrt{\frac{ L }{ g }}$ છે. $1\,mm$ જેટલા લઘુત્તમ કાપા ધરાવતી મીટર પટ્ટી વડે મપાયેલ $L$ નું મૂલ્ય $1.0\, m$ અને એક દોલન માટે $0.01$ સેકન્ડ જેટલું વિભેદન ધરાવતી સ્ટોપવૉચ વડે મપાયેલ એક સંપૂર્ણ દોલનનો સમય $1.95$ સેકન્ડ છે. $g$ માં મપાયેલ પ્રતિશત ત્રુટિ ..... $\%$ હશે.

  • [JEE MAIN 2021]

ગુરુત્વાકર્ષણને લીધે સાવાતા પ્રવેગને સાદા લોલકનો ઉ૫યોગ કરીને પૃથ્વીની સપાટી પર માપવામાં આવે છે. જો $\alpha$ અને $\beta$ અનુક્રમે લંબાઈ અને સમયના માપનમાં સંબંધિત ત્રુટિ છે, તો ગુરુત્વાકર્ષણને કારણે પ્રવેગ માપનની પ્રતિશત ત્રુટી કેટલી થશે?

સાદા લોલકનો આવર્તકાળ $ T = 2\pi \sqrt {\frac{l}{g}} $ હોય, જયાં $l=100\, cm$ અને તેમાં ખામી $1\,mm$ છે.આવર્તકાળ $2 \,sec$ છે.$100$ દોલનો માટેનો સમય $0.1 \,s$ લઘુતમ માપશકિત ધરાવતી ઘડિયાળ વડે માપવામાં આવે છે.તો ગુરુત્વપ્રવેગ $g$ માં પ્રતિશત ખામી ...... $\%$ થશે.