If $r,k,p \in W,$ then $\sum\limits_{r + k + p = 10} {{}^{30}{C_r} \cdot {}^{20}{C_k} \cdot {}^{10}{C_p}} $ is equal to -

  • A

    $\left( {\begin{array}{*{20}{c}}
      {60} \\ 
      {50} 
    \end{array}} \right)$

  • B

    $\left( {\begin{array}{*{20}{c}}
      {60} \\ 
      {30} 
    \end{array}} \right)$

  • C

    $\left( {\begin{array}{*{20}{c}}
      {60} \\ 
      {20} 
    \end{array}} \right)$

  • D

    $\left( {\begin{array}{*{20}{c}}
      {30} \\ 
      {10} 
    \end{array}} \right)\left( {\begin{array}{*{20}{c}}
      {30} \\ 
      {20} 
    \end{array}} \right)$

Similar Questions

If ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^2},$ then $C_0^2 + C_1^2 + C_2^2 + C_3^2 + ...... + C_n^2$ =

If ${}^{21}{C_1} + 3.{}^{21}{C_3} + 5.{}^{21}{C_5} + ......19{}^{21}{C_{19}} + 21.{}^{21}{C_{21}} = k$ Then number of prime factors of $k$ is

Let $\left(2 x ^{2}+3 x +4\right)^{10}=\sum \limits_{ r =0}^{20} a _{ r } x ^{ r } \cdot$ Then $\frac{ a _{7}}{ a _{13}}$ is equal to

  • [JEE MAIN 2020]

Let $(1 + x)^m = C_0 + C_1x + C_2x^2 + C_3x^3 + . . . . . +C_mx^m$,  where $C_r ={}^m{C_r}$ and $A = C_1C_3 + C_2C_4+ C_3C_5 + C_4C_6 + . . . . . .. + C_{m-2}C_m$,  then which is false

Let $n$ be an odd integer. If $\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $ for every value of $\theta $, then