7.Binomial Theorem
normal

If $r,k,p \in W,$ then $\sum\limits_{r + k + p = 10} {{}^{30}{C_r} \cdot {}^{20}{C_k} \cdot {}^{10}{C_p}} $ is equal to -

A

$\left( {\begin{array}{*{20}{c}}
  {60} \\ 
  {50} 
\end{array}} \right)$

B

$\left( {\begin{array}{*{20}{c}}
  {60} \\ 
  {30} 
\end{array}} \right)$

C

$\left( {\begin{array}{*{20}{c}}
  {60} \\ 
  {20} 
\end{array}} \right)$

D

$\left( {\begin{array}{*{20}{c}}
  {30} \\ 
  {10} 
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
  {30} \\ 
  {20} 
\end{array}} \right)$

Solution

requind sum is coefficientof $x^{10}$ in the expansion of $(1+x)^{30}(1+x)^{20}(1+x)^{10}$ i.e. ${\,^{60}}{C_{10}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.