The value of $\sum\limits_{n = 1}^\infty {\frac{{^n{C_0} + ...{ + ^n}{C_n}}}{{^n{P_n}}}} $ is

  • A

    ${e^2}$

  • B

    $e$

  • C

    ${e^2} - 1$

  • D

    $e - 1$

Similar Questions

Let $X =\left({ }^{10} C _1\right)^2+2\left({ }^{10} C _2\right)^2+3\left({ }^{10} C _3\right)^2+\ldots \ldots . .+10\left({ }^{10} C _{10}\right)^2$ where ${ }^{10} C _{ r }, r \in\{1,2, \ldots ., 10\}$ denote binomial coefficients. Then, the value of $\frac{1}{1430} X$ is. . . . . . .

  • [IIT 2018]

$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$ = . . . 

Find the coefficient of $x^{49}$ in the expansion of $(2x + 1) (2x + 3) (2x + 5)----- (2x + 99)$

The sum of the series $aC_0 + (a + b)C_1 + (a + 2b)C_2 + ..... + (a + nb)C_n$ is where $Cr's$ denotes combinatorial coefficient in the expansion of $(1 + x)^n, n \in N$

The coefficient of $x^9$ in the polynomial given by $\sum\limits_{r - 1}^{11} {(x + r)\,(x + r + 1)\,(x + r + 2)...\,(x + r + 9)}$ is