જો $q_1$ , $q_2$ , $q_3$ એ સમીકરણ $x^3 + 64$ = $0$ ના બીજ હોય તો $\left| {\begin{array}{*{20}{c}}
{{q_1}}&{{q_2}}&{{q_3}} \\
{{q_2}}&{{q_3}}&{{q_1}} \\
{{q_3}}&{{q_1}}&{{q_2}}
\end{array}} \right|$ ની કિમંત મેળવો.
$1$
$4$
$16$
$0$
ધારો કે સુરેખ સમીકરણ સંહતિ
$x+y+\alpha z=2$
$3 x+y+z=4$
$x+2 z=1$
ને અનન્ય ઉએેલ $\left( x ^{*}, y ^{*}, z ^{*}\right)$ છે. જો $\left(\alpha, x ^{*}\right),\left( y ^{*}, \alpha\right)$ અને $\left( x ^{*},- y ^{*}\right)$ તો $\alpha$સમરેખ બિંદુઓ હોય. તો $\alpha$ ની તમામ શક્ય કિંમતોનાં નિરપેક્ષ મૂલ્યોનો સરવાળો ........ છે.
ધારોકે $s$ એ $\theta \in[-\pi, \pi]$ ની એવી તમામ કિંમતોનો ગણ છે જેના માટે સુરેખ સમીકરણ સંહતિ
$x+y+\sqrt{3} z=0$
$-x+(\tan \theta) y+\sqrt{7} z=0$
$x+y+(\tan \theta) z=0$
ને અસાહજિક $(non-trivial)$ ઉકેલ છે.તો $\frac{120}{\pi} \sum_{\theta \in s} \theta=.........$
$3$ કક્ષાવાળા નિશ્રાયકમાં પ્રથમ સ્તંભમાં બે પદોનો સરવાળો છે , બીજા સ્તંભમાં ત્રણ પદનો સરવાળો છે અને ત્રીજા સ્તંભમાં ત્રણ પદનો સરવાળો છે તો તેને $ n $ નિશ્રાયક માં અલગ કરવામાં આવે તો $n$ ની કિમત મેળવો.
$\left| {\,\begin{array}{*{20}{c}}1&{\cos (\beta - \alpha )}&{\cos (\gamma - \alpha )}\\{\cos (\alpha - \beta )}&1&{\cos (\gamma - \beta )}\\{\cos (\alpha - \gamma )}&{\cos (\beta - \gamma )}&1\end{array}} \right|$ = . . .
જો સમીકરણ $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&{ - 2}\\7&8&x\end{array}\,} \right| = 0$ નું એક બીજ $ 5$ હોય , તો બાકીના બે બીજ મેળવો.