3.Trigonometrical Ratios, Functions and Identities
normal

જો $\alpha$, $\beta$,$\gamma$ એ ધન સંખ્યાઓ છે કે જેથી $\alpha + \beta = \pi$  અને $\beta  + \gamma = \alpha$ થાય તો $tan\ \alpha$= ................ (જ્યાં  $\gamma  \ne n\pi ,n \in I$ )

A

$ - 2\sqrt {\frac{{\tan \beta  + \tan \gamma }}{{\tan \gamma }}}$

B

$\sqrt {\frac{{2\tan \beta  + \tan \gamma }}{{\tan \gamma }}}$

C

$ - \sqrt {\frac{{2\tan \beta  + \tan \gamma }}{{\tan \gamma }}}$

D

$\sqrt {\frac{{\tan \beta  + \tan \gamma }}{{\tan \gamma }}}$

Solution

$\beta+\gamma=\alpha$

$\frac{\tan \beta+\tan \gamma}{1-\tan \beta \tan \gamma}=\tan \alpha$

$\tan \beta+\tan \gamma=\tan \alpha-\tan \beta \tan \gamma \tan \alpha$

use $\alpha+\beta=\pi \,\,\,and\,\,\,\,\,$$ \beta+r= \alpha$

$\tan \beta+\tan \gamma=-\tan \beta+\tan ^{2} \alpha \tan \gamma$

$\tan ^{2} \alpha=\frac{2 \tan \beta+\tan \gamma}{\tan \gamma}$

$\tan \alpha=-\sqrt{\frac{2 \tan \beta+\tan \gamma}{\tan \gamma}}$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.