$\sqrt {2 + \sqrt {2 + 2\cos 4\theta } } = $

  • A

    $\cos \theta $

  • B

    $\sin \theta $

  • C

    $2\cos \theta $

  • D

    $2\sin \theta $

Similar Questions

If $\tan A = \frac{{1 - \cos B}}{{\sin B}},$ find $\tan 2A$ in terms of $\tan B$ and show that

  • [IIT 1983]

If $\sin \alpha = \frac{{336}}{{625}}$ and $450^\circ < \alpha < 540^\circ ,$ then $\sin \left( {\frac{\alpha }{4}} \right) = $

If $\sin \alpha = \frac{{ - 3}}{5},$ where $\pi < \alpha < \frac{{3\pi }}{2},$ then $\cos \frac{1}{2}\alpha = $

The exact value of $\cos \frac{{2\pi }}{{28}}\,\cos ec\frac{{3\pi }}{{28}}\, + \,\cos \frac{{6\pi }}{{28}}\,\cos ec\frac{{9\pi }}{{28}} + \cos \frac{{18\pi }}{{28}}\cos ec\frac{{27\pi }}{{28}}$ is equal to

 

If $\tan \theta = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }},$ then $\sin \alpha + \cos \alpha $ and $\sin \alpha - \cos \alpha $ must be equal to