If $0 <  x , y < \pi$ and $\cos x +\cos y-\cos ( x + y )=\frac{3}{2},$ then $\sin x+\cos y$ is equal to ...... .

  • [JEE MAIN 2021]
  • A

    $\frac{1}{2}$

  • B

    $\frac{1+\sqrt{3}}{2}$

  • C

    $\frac{\sqrt{3}}{2}$

  • D

    $\frac{1-\sqrt{3}}{2}$

Similar Questions

If $\alpha ,\,\,\beta ,\gamma ,\,\,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $k$, then the value of $4\,\sin \frac{\alpha }{2} + 3\,\sin \frac{\beta }{2} + 2\,\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ is equal to

The value of $x$ that satisfies the relation $x = 1 - x + x^2 - x^3 + x^4 - x^5 + ......... \infty$

If $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ then

$A, B, C$ are the angles of a triangle, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C - 2\cos A\,\cos B\,\cos C = $

If $x + y + z = {180^o},$ then $\cos 2x + \cos 2y - \cos 2z$ is equal to