If $0 < x , y < \pi$ and $\cos x +\cos y-\cos ( x + y )=\frac{3}{2},$ then $\sin x+\cos y$ is equal to ...... .
$\frac{1}{2}$
$\frac{1+\sqrt{3}}{2}$
$\frac{\sqrt{3}}{2}$
$\frac{1-\sqrt{3}}{2}$
If $\alpha ,\,\,\beta ,\gamma ,\,\,\delta $ are the smallest positive angles in ascending order of magnitude which have their sines equal to the positive quantity $k$, then the value of $4\,\sin \frac{\alpha }{2} + 3\,\sin \frac{\beta }{2} + 2\,\sin \frac{\gamma }{2} + \sin \frac{\delta }{2}$ is equal to
The value of $x$ that satisfies the relation $x = 1 - x + x^2 - x^3 + x^4 - x^5 + ......... \infty$
If $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ then
$A, B, C$ are the angles of a triangle, then ${\sin ^2}A + {\sin ^2}B + {\sin ^2}C - 2\cos A\,\cos B\,\cos C = $
If $x + y + z = {180^o},$ then $\cos 2x + \cos 2y - \cos 2z$ is equal to