If $f(x)$ and $g(x)$ are functions satisfying $f(g(x))$ = $x^3 + 3x^2 + 3x + 4$  $f(x)$ = $log^3x + 3$, then slope of the tangent to the curve $y = g(x)$ at $x =  \ -1$ is 

  • A

    $0$

  • B

    $-1$

  • C

    $1$

  • D

    $e$

Similar Questions

The range of $f(x) = [\cos x + \sin x]$ is (Where $[.]$ is $G.I.F.$)

Let $f(x)=x^6-2 x^3+x^3+x^2-x-1$ and $g(x)=x^4-x^3-x^2-1$ be two polynomials. Let $a, b, c$ and $d$ be the roots of $g(x)=0$. Then, the value of $f(a)+f(b)+f(c)+f(d)$ is

  • [KVPY 2019]

If the domain of the function $f(x)=\sec ^{-1}\left(\frac{2 x}{5 x+3}\right)$ is $[\alpha, \beta) \cup(\gamma, \delta]$, then $|3 \alpha+10(\beta+\gamma)+21 \delta|$ is equal to $.......$.

  • [JEE MAIN 2023]

If $f:R \to R$ and $g:R \to R$ are given by $f(x) = \;|x|$ and $g(x) = \;|x|$ for each $x \in R$, then $\{ x \in R\;:g(f(x)) \le f(g(x))\} = $

Let $S=\{1,2,3,4,5,6,7\} .$ Then the number of possible functions $f: S \rightarrow S$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in S$ and $m . n \in S$ is equal to $......$

  • [JEE MAIN 2021]