1.Relation and Function
normal

If $f(x)$ and $g(x)$ are functions satisfying $f(g(x))$ = $x^3 + 3x^2 + 3x + 4$  $f(x)$ = $log^3x + 3$, then slope of the tangent to the curve $y = g(x)$ at $x =  \ -1$ is 

A

$0$

B

$-1$

C

$1$

D

$e$

Solution

$f(g(x))=(x+1)^{3}+3$

$f(x)=(\log x)^{3}+3$

$\therefore \quad g(x)=e^{x+1}$

$\therefore \quad \mathrm{g}^{\prime}(\mathrm{x})=\mathrm{e}^{\mathrm{x}+1}$

$g^{\prime}(-1)=1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.