Define a function $f(x)=\frac{16 x^2-96 x+153}{x-3}$ for all real $x \neq 3$. The least positive value of $f(x)$ is
$16$
$18$
$22$
$24$
If $\phi (x) = {a^x}$, then ${\{ \phi (p)\} ^3} $ is equal to
If $y = f(x) = \frac{{ax + b}}{{cx - a}}$, then $x$ is equal to
Let ${f_k}\left( x \right) = \frac{1}{k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)\;,x \in R$ and $k \ge 1$, then ${f_4}\left( x \right) - {f_6}\left( x \right)$ is equal to
Let $R$ be the set of all real numbers and let $f$ be a function from $R$ to $R$ such that $f(x)+\left(x+\frac{1}{2}\right) f(1-x)=1$, for all $x \in R$. Then $2 f(0)+3 f(1)$ is equal to
The graph of the function $y = f(x)$ is symmetrical about the line $x = 2$, then