The number of bijective functions $f :\{1,3,5, 7, \ldots \ldots . .99\} \rightarrow\{2,4,6,8, \ldots \ldots, 100\}$, such that $f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots \ldots f(99), \quad$ is
${ }^{50} P _{17}$
${ }^{50} P _{33}$
$33 ! \times 17 !$
$\frac{50 !}{2}$
The domain of the definition of the function $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ is
The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ is
Consider the function $\mathrm{f}:\left[\frac{1}{2}, 1\right] \rightarrow \mathrm{R}$ defined by $f(x)=4 \sqrt{2} x^3-3 \sqrt{2} x-1$. Consider the statements
$(I)$ The curve $y=f(x)$ intersects the $x$-axis exactly at one point
$(II)$ The curve $y=f(x)$ intersects the $x$-axis at $\mathrm{x}=\cos \frac{\pi}{12}$
Then
Let $f :R \to R$ be defined by $f(x)\,\, = \,\,\frac{x}{{1 + {x^2}}},\,x\, \in \,R.$ Then the range of $f$ is