જો $C_r= ^{100}{C_r}$ , હોય તો $1.C^2_0 - 2.C^2_1 + 3.C^2_3 - 4.C^2_0 + 5.C^2_4 - .... + 101.C^2_{100}$ ની કિમત મેળવો
${100.^{100}}{C_{50}}\,\,\,$
${51.^{100}}{C_{50}}\,\,\,$
${100.^{200}}{C_{100}}\,\,\,$
${51.^{200}}{C_{100}}\,\,\,$
જો $n$ એ ધન પૂર્ણાક છે કે જેથી $n \ge 3$, હોય તો શ્રેણી $1 . n - \frac{{\left( {n\, - \,1} \right)}}{{1\,\,!}} (n - 1) + \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)}}{{2\,\,!}} (n - 2) $$- \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)\,\,\left( {n\, - \,3} \right)}}{{3\,\,!}} (n - 3) + ......$ ના $n$ પદોનો સરવાળો મેળવો
જો ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ ના સહગુણકનો સરવાળો શૂન્ય હોય તો $\alpha $ મેળવો.
જો $(1 - 2x + 5x^2 - 10x^3) (1 + x)^n = 1 + a_1x + a_2x^2 + ....$ આપેલ હોય અને $a_1^2\,= 2a_2$ હોય તો $n$ ની કિમત મેળવો
ધારોકે $\left(a+b x+c x^2\right)^{10}=\sum \limits_{i=0}^{20} p_i x^i a, b, c \in N$ જો $p_1=20$ અને $p_2=210$ હીય, તો $2(a+b+c)=.......$
જો બધા ધન પૂર્ણાંક $r> 1, n > 2$ માટે $( 1 + x)^{2n}$ ના વિસ્તરણમાં $x$ ની ઘાત $(3r)$ અને $(r + 2)$ ના સહગુણક સરખા હોય તો $n$ ની કિમત મેળવો.