$\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ is equal to

  • [JEE MAIN 2022]
  • A

    $2^{2 n }-{ }^{2 n } C _{ n }$

  • B

    $2^{2 n -1}-^{2 n -1} C _{ n -1}$

  • C

    $2^{2 n }-\frac{1}{2}{ }^{2 n } C _{ n }$

  • D

    $2^{ n -1}+{ }^{2 n -1} C _{ n }$

Similar Questions

The expression $x^3 - 3x^2 - 9x + c$ can be written in the form $(x - a)^2 (x - b)$ if the values of $c$ is

In the expansion of

$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ find the coefficient of $x^{12}$ is :-

The coefficient of $x^r (0 \le r \le n - 1)$ in the expression :

$(x + 2)^{n-1} + (x + 2)^{n-2}. (x + 1) + (x + 2)^{n-3} . (x + 1)^2; + ...... + (x + 1)^{n-1}$ is :

If the Coefficient of $x^{30}$ in the expansion of $\left(1+\frac{1}{x}\right)^6\left(1+x^2\right)^7\left(1-x^3\right)^8 ; x \neq 0$ is $\alpha$, then $|\alpha|$ equals

  • [JEE MAIN 2024]

If ${C_r}$ stands for $^n{C_r}$, the sum of the given series $\frac{{2(n/2)!(n/2)!}}{{n!}}[C_0^2 - 2C_1^2 + 3C_2^2 - ..... + {( - 1)^n}(n + 1)C_n^2]$, Where $n$ is an even positive integer, is

  • [IIT 1986]