If $z_1, z_2, z_3$ $\in$  $C$ such that $|z_1| = |z_2| = |z_3| = 2$, then greatest value of expression $|z_1 - z_2|.|z_2 - z_3| + |z_3 - z_1|.|z_1 - z_2| + |z_2 - z_3||z_3 - z_1|$ is

  • A

    $18$

  • B

    $36$

  • C

    $9$

  • D

    $72$

Similar Questions

If$z = \frac{{1 - i\sqrt 3 }}{{1 + i\sqrt 3 }},$then $arg(z) = $ ............. $^\circ$

The amplitude of $0$ is

If $arg\,z < 0$ then $arg\,( - z) - arg\,(z)$ is equal to

  • [IIT 2000]

The argument of the complex number $\frac{{13 - 5i}}{{4 - 9i}}$is

If $z_1, z_2  $ are any two complex numbers, then $|{z_1} + \sqrt {z_1^2 - z_2^2} |$ $ + |{z_1} - \sqrt {z_1^2 - z_2^2} |$ is equal to