4-1.Complex numbers
normal

If $z_1$ and $z_2$ are two unimodular complex numbers that satisfy $z_1^2 + z_2^2 = 5,$ then ${\left( {{z_1} - {{\bar z}_1}} \right)^2} + {\left( {{z_2} - {{\bar z}_2}} \right)^2}$ is equal to -

A

$6$

B

$5$

C

$9$

D

$10$

Solution

$\left|Z_{1}\right|=1,\left|Z_{2}\right|=1$

$Z_{1}^{2}+Z_{2}^{2}=5$

so $\bar{Z}_{1}^{2}+\bar{Z}_{2}^{2}=5$

$\left(Z_{1}-\bar{Z}_{1}\right)^{2}+\left(Z_{2}-\bar{Z}_{2}\right)^{2}$

$=Z_{1}^{2}+Z_{2}^{2}+\bar{Z}_{1}^{2}+\bar{Z}_{2}^{2}-2\left|Z_{1}\right|^{2}-2\left|Z_{2}\right|^{2}$

$10-4=6$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.