If $z_1$ and $z_2$ are two unimodular complex numbers that satisfy $z_1^2 + z_2^2 = 5,$ then ${\left( {{z_1} - {{\bar z}_1}} \right)^2} + {\left( {{z_2} - {{\bar z}_2}} \right)^2}$ is equal to -

  • A

    $6$

  • B

    $5$

  • C

    $9$

  • D

    $10$

Similar Questions

If ${z_1} = 1 + 2i$ and ${z_2} = 3 + 5i$, and then $\operatorname{Re} \left( {\frac{{{{\bar z}_2}{z_1}}}{{{z_2}}}} \right)$ is equal to

Consider the following two statements :

Statement $I$ : For any two non-zero complex numbers $\mathrm{z}_1, \mathrm{z}_2$

$\left(\left|z_1\right|+\left|z_2\right|\right)\left|\frac{z_1}{\left|z_1\right|}+\frac{z_2}{\left|z_2\right|}\right| \leq 2\left(\left|z_1\right|+\left|z_2\right|\right)$ and

Statement $II$ : If $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are three distinct complex numbers and a, b, c are three positive real numbers such that $\frac{a}{|y-z|}=\frac{b}{|z-x|}=\frac{c}{|x-y|}$, then

$\frac{\mathrm{a}^2}{\mathrm{y}-\mathrm{z}}+\frac{\mathrm{b}^2}{\mathrm{z}-\mathrm{x}}+\frac{\mathrm{c}^2}{\mathrm{x}-\mathrm{y}}=1$

Between the above two statements,

  • [JEE MAIN 2024]

If $z$ is a complex number, then $(\overline {{z^{ - 1}}} )(\overline z ) = $

If $z = x + iy\, (x, y \in R,\, x \neq \, -1/2)$ , the number of values of $z$ satisfying ${\left| z \right|^n}\, = \,{z^2}{\left| z \right|^{n - 2}}\, + \,z{\left| z \right|^{n - 2}}\, + \,1\,.\,\left( {n \in N,n > 1} \right)$ is

If $|{z_1}|\, = \,|{z_2}|$ and $amp\,{z_1} + amp\,\,{z_2} = 0$, then