8. Sequences and Series
normal

if $x = \,\frac{4}{3}\, - \,\frac{{4x}}{9}\, + \,\,\frac{{4{x^2}}}{{27}}\, - \,\,.....\,\infty $ , then $x$ is equal to

A

only $1$

B

$1$ or $-4$

C

only $-4$

D

$-1$ or $4$ 

Solution

$\Rightarrow x=\frac{4}{3}\left(\frac{1}{1+\frac{x}{3}}\right)=\frac{4}{3+x}$

$\Rightarrow 3 x+x^{2}=4$

$\Rightarrow x^{2}+3 x-4 \Rightarrow(x+4)(x-1)=0$

$\Rightarrow x=1,-4$

$\Rightarrow x=1$ only as $\left|-\frac{4}{3}\right|>1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.