If the sum and product of four positive consecutive terms of a $G.P.$, are $126$ and $1296$, respectively, then the sum of common ratios of all such $GPs$ is $.........$.

  • [JEE MAIN 2023]
  • A

    $7$

  • B

    $\frac{9}{2}$

  • C

    $3$

  • D

    $14$

Similar Questions

Find four numbers forming a geometric progression in which the third term is greater than the first term by $9,$ and the second term is greater than the $4^{\text {th }}$ by $18 .$

The number of natural number $n$ in the interval $[1005, 2010]$ for which the polynomial. $1+x+x^2+x^3+\ldots+x^{n-1}$ divides the polynomial $1+x^2+x^4+x^6+\ldots+x^{2010}$ is

  • [KVPY 2010]

If $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^{9}}+\ldots . .+\frac{10240}{3}=2^{ n } \cdot m$, where $m$ is odd, then $m . n$ is equal to

  • [JEE MAIN 2022]

If $b$ is the first term of an infinite $G.P$ whose sum is five, then $b$ lies in the interval

  • [JEE MAIN 2018]

The sum of the $3^{rd}$ and the $4^{th}$ terms of a $G.P.$ is $60$ and the product of its first three terms is $1000$. If the first term of this $G.P.$ is positive, then its $7^{th}$ term is

  • [JEE MAIN 2015]