- Home
- Standard 11
- Mathematics
8. Sequences and Series
hard
If the sum and product of four positive consecutive terms of a $G.P.$, are $126$ and $1296$, respectively, then the sum of common ratios of all such $GPs$ is $.........$.
A
$7$
B
$\frac{9}{2}$
C
$3$
D
$14$
(JEE MAIN-2023)
Solution
$a, a r, a r^2, a r^3(a, r > 0)$
$a^4 r^6=1296$
$a^2 r^3=36$
$a=\frac{6}{r^{3 / 2}}$
$a+a r+a r^2+a r^3=126$
$\frac{1}{r^{3 / 2}}+\frac{r}{r^{3 / 2}}+\frac{r^2}{r^{3 / 2}}+\frac{r^3}{r^{3 / 2}}=\frac{126}{6}=21$
$\left(r^{-3 / 2}+r^{3 / 2}\right)+\left(r^{1 / 2}+r^{-1 / 2}\right)=21$
$r^{1 / 2}+r^{-1 / 2}=A$
$r^{-3 / 2}+r^{3 / 2}+3 A = A ^3$
$A ^3-3 A + A =21$
$A ^3-2 A =21$
$A =3$
$\sqrt{ r }+\frac{1}{\sqrt{r}}=3$
$r +1=3 \sqrt{ r }$
$r^2+2 r+1=9 r$
$r^2-7 r+1=0$
Standard 11
Mathematics