જો $h\left( x \right) = \left[ {\ln \frac{x}{e}} \right] + \left[ {\ln \frac{e}{x}} \right]$ જ્યા [.] મહત્તમ વિધેય હોય તો નિચેનામાંથી ક્યુ ખોટુ છે ?
$h(x)$ નો વિસ્તાર $\{-1, 0\}$ છે.
$h(x)$ એ આવર્તિય વિધેય છે
જો $h(x) = -1$ ,હોય તો $x$ સમેય કે અસમેય હોય શકે
જો $h(x) = 0$ હોય તો $x$ અસમેય સંખ્યા છે
સમીકરણ $|x\,-\,2| + |x\,-\,1| = x\,-\,3$ ને ઉકેલો.
વિધેય $f(x) = log|5{x} - 2x|$ નો પ્રદેશ્ગણ $x \in R - A$ હોય તો $n(A)$ = ....... થાય. ( જ્યા $\{.\}$ અપુર્ણાક વિધેય છે )
ધારો કે $S =\{1,2,3,4,5,6\}$ અને $P ( S )$ એ $S$ નો ઘાતગણ દર્શાવે છે.તો જયારે $n < m$ હોય ત્યારે $f(n) \subset f(m)$ થાય તેવા એક-એક વિધેયો $f: S \rightarrow P(S)$ ની સંખ્યા $........$ છે.
જો વિધેય $f(x)=\log _e\left(4 x^2+11 x+6\right)+\sin ^{-1}(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right)$ નો પ્રદેશ $(\alpha, \beta]$ હોય, તો $36|\alpha+\beta|=......$
જો વિધેય $f(x){ = ^{9 - x}}{C_{x - 1}}$ ના પ્રદેશગણ અને વિસ્તારગણમા અનુક્ર્મે $m$ અને $n$ સભ્યો હોય તો