સાબિત કરો કે વિધેય $f: R \rightarrow R$, $f(x)=2 x$ એક-એક અને વ્યાપ્ત છે.
$f$ is one-one, as $f\left(x_{1}\right)$ $=f\left(x_{2}\right) \Rightarrow 2 x_{1}$ $=2 x_{2} \Rightarrow x_{1}=x_{2} .$ Also, given any real number $y$ in $R$ there exists $\frac{y}{2}$ in $R$ such that $f\left(\frac{y}{2}\right)$ $=2 \cdot\left(\frac{y}{2}\right)=y .$ Hence, $f$ is onto.
વક્ર $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R$,એ $x-$અક્ષને જ્યાં છેદે તે બિંદુઓની સંખ્યા $.........$ છે.
જો વિધેય $f(x+y)=f(x) f(y)$ for all $x, y \in N$ એવી રીતે વ્યાખ્યાયિત હોય કે જેથી, $f(1)=3$ અને $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $ તો $n$ નું મૂલ્ય શોધો.
વિધેય $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^{2}-1}\right)}{\pi}\right)$ નો પ્રદેશ $\dots\dots$છે.
સાબિત કરો કે $f: N \rightarrow N$, $f(x)=2 x$ વડે વ્યાખ્યાયિત વિધેય એક-એક છે, પરંતુ વ્યાપ્ત નથી.
નીચેનામાંથી ક્યુ વિધેય છે?