સાબિત કરો કે વિધેય $f: R \rightarrow R$, $f(x)=2 x$ એક-એક અને વ્યાપ્ત છે.
$f$ is one-one, as $f\left(x_{1}\right)$ $=f\left(x_{2}\right) \Rightarrow 2 x_{1}$ $=2 x_{2} \Rightarrow x_{1}=x_{2} .$ Also, given any real number $y$ in $R$ there exists $\frac{y}{2}$ in $R$ such that $f\left(\frac{y}{2}\right)$ $=2 \cdot\left(\frac{y}{2}\right)=y .$ Hence, $f$ is onto.
વક્ર $y = \frac{|x-x^2|}{x^2-x}$ નો ગ્રાફ નીચેનામાંથી ક્યો છે ?
$x = - 3$ માટે સમીકરણ $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ ની કિમત મેળવો.
જો વિધેય $f(x)$ માટે $f\left( {x + \frac{1}{x}} \right) = {x^2} + \frac{1}{{{x^2}}};$ હોય તો $(fof )$ $\sqrt {11} )$ =
વિધેય $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ નો વિસ્તાર મેળવો.