વિધેય $f$ એ દરેક વાસ્તવિક $x \ne 1$ માટે સમીકરણ $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$ નું પાલન કરે છે તો $f(7)$ મેળવો.
$8$
$4$
$-8$
$11$
જો $f(x)$ એ બહુપદી વિધેય હોય કે જેથી $f(x).f (\frac{1}{x}) = f(x) + f (\frac{1}{x})$ અને $f(4) = 65$ થાય તો $f(6)$ ની કિમત મેળવો.
વક્ર $y = f(x)$ નો ગ્રાફ આપેલ છે તો સમીકરણ $f(f(x)) =2$ ના ઉકેલોની સંખ્યાઓ ......... થાય.
અહી ગણ $A$ અને $B$ એ વિધેય $f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$ નો પ્રદેશ અને વિસ્તાર દર્શાવે છે. કે જ્યાં $\lceil x \rceil$ એ ન્યૂનતમ પૃણાંક વિધેય છે.આપેલ વિધાન જુઓ.
$( S 1): A \cap B =(1, \infty)-N$ અને
$( S 2): A \cup B=(1, \infty)$
સાબિત કરો કે વિધેય $f : R \rightarrow R$, $f ( x )= x ^{3}$ એક-એક છે.
જો દરેક વાસ્તવિક સંખ્યા માટે $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$ તો $ f$ ની ન્યૂનતમ કિમત મેળવો.