વિધેય $f$ એ દરેક વાસ્તવિક $x \ne 1$ માટે સમીકરણ $3f(x) + 2f\left( {\frac{{x + 59}}{{x - 1}}} \right) = 10x + 30$ નું પાલન કરે છે તો $f(7)$ મેળવો.

  • A

    $8$

  • B

    $4$

  • C

    $-8$

  • D

    $11$

Similar Questions

જો $f(x)$ એ બહુપદી વિધેય હોય કે જેથી $f(x).f (\frac{1}{x}) = f(x) + f (\frac{1}{x})$ અને $f(4) = 65$ થાય તો $f(6)$ ની કિમત મેળવો.

વક્ર $y = f(x)$ નો ગ્રાફ આપેલ છે તો સમીકરણ $f(f(x)) =2$ ના ઉકેલોની સંખ્યાઓ ......... થાય.

અહી ગણ  $A$ અને $B$ એ વિધેય $f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$ નો પ્રદેશ અને વિસ્તાર દર્શાવે છે. કે જ્યાં $\lceil x \rceil$ એ ન્યૂનતમ  પૃણાંક વિધેય છે.આપેલ વિધાન જુઓ.

$( S 1): A \cap B =(1, \infty)-N$ અને

$( S 2): A \cup B=(1, \infty)$

  • [JEE MAIN 2023]

સાબિત કરો કે વિધેય $f : R \rightarrow R$, $f ( x )= x ^{3}$ એક-એક છે. 

જો દરેક વાસ્તવિક સંખ્યા માટે $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$ તો $ f$ ની ન્યૂનતમ કિમત મેળવો.