જો $3$ ભિન્ન વાસ્તવિક સંખ્યાઓ $a$,$b$,$c$ માટે $a^2(a + p) = b^2 (b + p) = c^2 (c + p)$ જ્યાં $p \in R$, થાય તો $bc + ca + ab$ ની કિમત મેળવો 

  • A

    $-p$

  • B

    $p$

  • C

    $0$

  • D

    $\frac{{{p^2}}}{2}$

Similar Questions

સમીકરણ $|x - 2|^2 + |x - 2| - 6 = 0$ નાં બીજ ......છે.

ધારો કે $\alpha_1, \alpha_2, \ldots, \alpha_7$ એ સમીકરણ $x^7+3 x^5-13 x^3-15 x=0$ નાં બીજ છે અને $\left|a_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ તો $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6=......$

  • [JEE MAIN 2023]

સમીકરણ $|\mathrm{x}+1||\mathrm{x}+3|-4|\mathrm{x}+2|+5=0$,નાં ભિન્ન વાસ્તવિક બીજોની સંખ્યા............ છે. 

  • [JEE MAIN 2024]

અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો  $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો  $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.

  • [JEE MAIN 2022]

સમીકરણ $x|x+5|+2|x+7|-2=0$ ના વાસ્તવિક ઉકેલોની સંખ્યા ............ છે. 

  • [JEE MAIN 2024]