સમીકરણ $x|x-1|+|x+2|+a=0$ ને બરાબર એક જ વાસ્તવિક બીજ હોય, તેવા તમામ $a \in R$ નો ગણ $........$ છે.
$(-6,-3)$
$(-\infty, \infty)$
$(-6, \infty)$
$(-\infty,-3)$
$m$ ના કયા મૂલ્ય માટે સમીકરણ $y^2 + 2xy + 2x + my - 3$ ને બે સંમેય અવયવ ઉકેલી શકાય ?
સમીકરણ ${x^2} - |x + 2| + x > 0,$ માટે, $x$ ની વાસ્તવિક સંખ્યાઓનો ગણ મેળવો.
સમીકરણ $\left| {\sqrt x - 2} \right| + \sqrt x \left( {\sqrt x - 4} \right) + 2 = 0\left( {x > 0} \right)$ ના ઉકેલોનો સરવાળો ..... થાય
અહી $\alpha, \beta(\alpha>\beta)$ એ દ્રીઘાત સમીકરણ $x ^{2}- x -4=0$ ના બીજ છે. જો $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$ તો $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ ની કિમંત $......$ થાય.
જો $\sqrt {3{x^2} - 7x - 30} + \sqrt {2{x^2} - 7x - 5} = x + 5,\,$ તો $\,\,{\rm{x = \ldots }}..{\rm{ }}$