સમીકરણ $x|x-1|+|x+2|+a=0$ ને બરાબર એક જ વાસ્તવિક બીજ હોય, તેવા તમામ $a \in R$ નો ગણ $........$ છે.
$(-6,-3)$
$(-\infty, \infty)$
$(-6, \infty)$
$(-\infty,-3)$
જો $2 + 3i$ એ સમીકરણ $2x^3 -9x^2 + kx- 13 = 0,$ $k \in R,$ નો એક ઉકેલ હોય તો આ સમીકરણના વાસ્તવિક ઉકેલ મેળવો.
ધારોકે $\lambda \in R$ અને ધારોકે સમીકરણ $E$ એ $|x|^2-2|x|+|\lambda-3|=0$ છે. તો ગણ $S =\{x+\lambda: x$ એ $E$ નો પૂર્ણાંક ઉકેલ છે; નો મહતમ ધટક $.............$ છે.
જો $\alpha $, $\beta$, $\gamma$ એ સમીકરણ ${x^3} - 2{x^2} + 3x - 2 = 0$ ના બીજો હોય તો $\left( {\frac{{\alpha \beta }}{{\alpha + \beta }} + \frac{{\alpha \gamma }}{{\alpha + \gamma }} + \frac{{\beta \gamma }}{{\beta + \gamma }}} \right)$ ની કિમત મેળવો
જો $a, b, c \in R$ અને $1$ એ સમીકરણ $ax^2 + bx + c = 0$ ના ઉકેલો હોય તો વક્ર y $= 4ax^2 + 3bx+ 2c, a \ne 0$ એ $x-$ ક્યાં બિંદુએ છેદશે ?
જો $x$ કોઇ વાસ્તવિક સંખ્યા હોય તો $\frac{{3{x^2} + 9x + 17}}{{3{x^2} + 9x + 7}}$ ની મહતમ કિંમત . . . હોય . .