If $cosA + cosB = cosC,\ sinA + sinB = sinC$ then the value of expression $\frac{{\sin \left( {A + B} \right)}}{{\sin 2C}}$ is
$0$
$1$
$2$
$3$
The value of $cot\, x + cot\, (60^o + x) + cot\, (120^o + x)$ is equal to :
If $(\sec A + \tan A)\,(\sec B + \tan B)\,(\sec C + \tan C)$ $ = \,(\sec A - \tan A)\,(\sec B - \tan B)\,(\sec C - \tan C),$ then each side is equal to
Prove that $\cot 4 x(\sin 5 x+\sin 3 x)=\cot x(\sin 5 x-\sin 3 x)$
If $A + B + C = \pi ,$ then ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ is always
If $A + B + C = {180^o},$ then $\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C - 1}} = $