3.Trigonometrical Ratios, Functions and Identities
normal

જો $cosA + cosB = cosC,\ sinA + sinB = sinC$ હોય તો સમીકરણ $\frac{{\sin \left( {A + B} \right)}}{{\sin 2C}}$ = 

A

$0$

B

$1$

C

$2$

D

$3$

Solution

${{\rm{e}}^{{\rm{iA}}}} + {{\rm{e}}^{{\rm{iB}}}} = (\cos A + {\rm{i}}\sin {\rm{A}}) + (\cos {\rm{B}} + {\rm{i}}\sin {\rm{B}})$

$ = \cos C + i\sin C = {e^{iC}}$

Also ${e^{ – iA}} + {e^{ – iB}} = {e^{ – iC}}$

$ \Rightarrow \frac{{{e^{iC}}}}{{{e^{i\left( {A + B} \right)}}}} = {e^{ – iC}} \Rightarrow {e^{2iC}} = {e^{i(A + B)}}$

$\Rightarrow \cos 2 C+i \sin 2 C$

$=\cos (A+B)+i \sin (A+B)$

$\therefore \sin (A+B)=\sin 2 C$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.