If $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$
$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$
and $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ then
$y = z$
$y + z = a + c$
$y - z = a + c$
$y - z = {(a - c)^2} + 4{b^2}$
Prove that $\frac{\cos 7 x+\cos 5 x}{\sin 7 x-\sin 5 x}=\cot x$
If ${\tan ^2}\theta = 2{\tan ^2}\phi + 1,$ then $\cos 2\theta + {\sin ^2}\phi $ equals
$2\,{\sin ^2}\beta + 4\,\,\cos \,(\alpha + \beta )\,\,\sin \,\alpha \,\sin \,\beta + \cos \,2\,(\alpha + \beta ) = $
Prove that $\frac{\cos 4 x+\cos 3 x+\cos 2 x}{\sin 4 x+\sin 3 x+\sin 2 x}=\cot 3 x$
The value of $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is $............$.