If $\tan x = \frac{{2b}}{{a - c}}(a \ne c),$
$y = a\,{\cos ^2}x + 2b\,\sin x\cos x + c\,{\sin ^2}x$
and $z = a{\sin ^2}x - 2b\sin x\cos x + c{\cos ^2}x,$ then
$y = z$
$y + z = a + c$
$y - z = a + c$
$y - z = {(a - c)^2} + 4{b^2}$
The expression $\frac{{{{\tan }^2}20^\circ - {{\sin }^2}20^\circ }}{{{{\tan }^2}20^\circ \,\cdot\,{{\sin }^2}20^\circ }}$ simplifies to
If $\sin \theta + \sin 2\theta + \sin 3\theta = \sin \alpha $and $\cos \theta + \cos 2\theta + \cos 3\theta = \cos \alpha $, then $\theta$ is equal to
$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $
If $A + B + C = {180^o},$ then $\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C - 1}} = $
If $\tan \theta = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }},$ then $\sin \alpha + \cos \alpha $ and $\sin \alpha - \cos \alpha $ must be equal to