If $A$ lies in the third quadrant and $3\ tanA - 4 = 0$ , then find the value of $5\ sin\ 2A + 3\ sinA + 4\ cosA$
$0$
$1$
$2$
none of these
If $\cos A = \frac{3}{4}$, then $32\sin \frac{A}{2}\cos \frac{5}{2}A = $
If $0 < x , y < \pi$ and $\cos x +\cos y-\cos ( x + y )=\frac{3}{2},$ then $\sin x+\cos y$ is equal to ...... .
If $\alpha + \beta - \gamma = \pi ,$ then ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = $
$3\,\left[ {{{\sin }^4}\,\left( {\frac{{3\pi }}{2} - \alpha } \right) + {{\sin }^4}\,(3\pi + \alpha )} \right]$ $ - 2\,\left[ {{{\sin }^6}\,\left( {\frac{\pi }{2} + \alpha } \right) + {{\sin }^6}(5\pi - \alpha )} \right] = $
If $\alpha + \beta + \gamma = 2\pi ,$ then