- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
medium
If $\alpha + \beta = \frac{\pi }{2}$ and $\beta + \gamma = \alpha ,$ then $\tan \,\alpha $ equals
A
$2\,(\tan \beta + \tan \gamma )$
B
$\tan \beta + \tan \gamma $
C
$\tan \beta + 2\,\tan \gamma $
D
$2\,\tan \beta + \tan \gamma $
(IIT-2001)
Solution
(c)$\alpha + \beta = \frac{\pi }{2} \Rightarrow \tan \beta = \cot \alpha $
$\tan (\beta + \gamma ) = \tan \alpha $ ==> $\tan \alpha = \frac{{\tan \beta + \tan \gamma }}{{1 – \tan \beta \tan \gamma }}$
==> $\tan \alpha = \frac{{\cot \alpha + \tan \gamma }}{{1 – \cot \alpha \tan \gamma }}$
==> $\tan \alpha – \tan \gamma = \cot \alpha + \tan \gamma $
==> $\tan \alpha = \tan \beta + 2\tan \gamma $.
Standard 11
Mathematics