If $\alpha + \beta = \frac{\pi }{2}$ and $\beta + \gamma = \alpha ,$ then $\tan \,\alpha $ equals

  • [IIT 2001]
  • A

    $2\,(\tan \beta + \tan \gamma )$

  • B

    $\tan \beta + \tan \gamma $

  • C

    $\tan \beta + 2\,\tan \gamma $

  • D

    $2\,\tan \beta + \tan \gamma $

Similar Questions

${\cos ^2}A{(3 - 4{\cos ^2}A)^2} + {\sin ^2}A{(3 - 4{\sin ^2}A)^2} = $

The value of $cosec \frac{\pi }{{18}} - \sqrt 3 \,sec\, \frac{\pi }{{18}}$ is a

Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$

Value of $\frac{{4\sin {9^o}\sin {{21}^o}\sin {{39}^o}\sin {{51}^o}\sin {{69}^o}\sin {{81}^o}}}{{\sin {{54}^o}}}$ is equal to

If $\frac{{5\pi }}{2} < x < 3\pi $, then the value of the expression $\frac{{\sqrt {1 - \sin x}  + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x}  - \sqrt {1 + \sin x} }}$ is