If $\alpha + \beta = \frac{\pi }{2}$ and $\beta + \gamma = \alpha ,$ then $\tan \,\alpha $ equals

  • [IIT 2001]
  • A

    $2\,(\tan \beta + \tan \gamma )$

  • B

    $\tan \beta + \tan \gamma $

  • C

    $\tan \beta + 2\,\tan \gamma $

  • D

    $2\,\tan \beta + \tan \gamma $

Similar Questions

The value of $cosec \frac{\pi }{{18}} - \sqrt 3 \,sec\, \frac{\pi }{{18}}$ is a

Value of ${\sin ^2}\frac{\pi }{8} + {\sin ^2}\frac{{3\pi }}{8} + {\sin ^2}\frac{{5\pi }}{8} + {\sin ^2}\frac{{7\pi }}{8}$ is

If $\sin \alpha = \frac{{336}}{{625}}$ and $450^\circ < \alpha < 540^\circ ,$ then $\sin \left( {\frac{\alpha }{4}} \right) = $

$\frac{{\sin {{81}^o} + \cos {{81}^o}}}{{\sin {{81}^o} - \cos {{81}^o}}}$ is equal to

$\frac{{\sin 3\theta + \sin 5\theta + \sin 7\theta + \sin 9\theta }}{{\cos 3\theta + \cos 5\theta + \cos 7\theta + \cos 9\theta }} = $