किसी स्प्रिंग से भार लटकाने पर इसकी लम्बाई में वृद्धि $x$ है यदि स्प्रिंग में उत्पन्न तनाव $T$ एवं इसका बल नियतांक $K$ हो तो स्प्रिंग में संचित ऊर्जा है
$\frac{{{T^2}}}{{2x}}$
$\frac{{{T^2}}}{{2K}}$
$\frac{{2K}}{{{T^2}}}$
$\frac{{2{T^2}}}{K}$
दो द्रव्यमान $M _{ A }$ तथा $M _{ B }$ को दो तारों, जिनकी लम्बाइयां $L _{ A }$ तथा $L _{ B }$ है, से लटकाने पर सरल आवर्तगतियां करते है। यदि इनकी आवर्तियों में संबंध $f _{ A }=2 f _{ B }$ हो तो
$K$ बल नियतांक वाली एक स्प्रिंग का एक-चौथाई भाग काट कर अलग कर दिया जाता है। शेष स्प्रिंग का बल नियतांक होगा
बराबर द्रव्यमान के दो पिण्ड $M$ तथा $N$ दो द्रव्यमानहीन स्प्रिंगों से अलग-अलग लटके हैं। स्प्रिंग के बल नियतांक क्रमश: ${k_1}$ तथा ${k_2}$ है। यदि दोनों पिण्ड ऊध्र्वाधर तल में इस प्रकार कम्पन करते हैं कि इनके अधिकतम वेग बराबर हैं, तब $M$ के कम्पन के आयाम का $N$ के साथ अनुपात है
किसी घर्षण-रहित पृष्ठ (frictionless surface) पर, $m_1$ और $m_z$ द्रव्यमान (mass) के दो पिंडों को एक $k$ स्पिंग स्थिरांक (constant) वाले स्प्रिंग के साथ जोड़ा गया है। यदि उन द्रव्यमानँ को दूर खीचकर छोड विया जाए तो उनके दोलन का आवर्तकाल (time period of oscillation) क्या होगा ?
$k$ बल नियतांक के एक भारहीन स्प्रिंग् पर $m$ द्रव्यमान टाँगने पर यह $n$ आवृत्ति से दोलन करता है। अब स्प्रिंग् को दो समान भागों में काट दिया जाता है एवं इससे $2m$ द्रव्यमान टाँग दिया जाता है, तो अब दोलन की आवृत्ति होगी