જો ચતુષ્કોણના બધા અંતર્ગત ખૂણાઓ સમાંતર શ્રેણીમાં અને તેમની વચ્ચેનો સામાન્ય તફાવત $10^o$ હોય તો ન્યૂનતમ ખૂણો ............$^o$ થાય ?
$60^o$
$70$
$120$
$75$
ધારોકે $a, b, c$ સમાંતર શ્રેણીમાં છે. ધારો કે $(a, c), (2, b)$ અને $(a, b)$ શિરોબિંદુવાળા ત્રિકોણનું મધ્યકેન્દ્ર $\left(\frac{10}{3}, \frac{7}{3}\right)$ છે. જો સમીકરણ $ax ^{2}+ bx +1=0$ નાં બીજ $\alpha, \beta$ હોય, તો $\alpha^{2}+\beta^{2}-\alpha \beta$ નું મૂલ્ય ....... છે.
ગણ $\{\alpha \in\{1,2, \ldots, 100\}$ ગુ.સા.અ.$(\alpha, 24)=1\}$ ના તમામ ધટકોનો સરવાળો
અહી $a$, $b$ એ બે શૂન્યતર વાસ્તવિક સંખ્યા છે . જો $p$ અને $r$ એ સમીકરણ $x ^{2}-8 ax +2 a =0$ ના બીજ છે અને $q$ અને $s$ એ સમીકરણ $x^{2}+12 b x+6 b$ $=0$ ના બીજ છે કે જેથી $\frac{1}{ p }, \frac{1}{ q }, \frac{1}{ r }, \frac{1}{ s }$ એ સમાંતર શ્રેણીમાં છે તો $a ^{-1}- b ^{-1}$ ની કિમંત $......$ થાય.
જેનું $n$ મું પદ આપેલ છે તે શ્રેણીનાં ${a_{17}},{a_{24}}$ પદ શોધો : $a_{n}=4 n-3$
જો $S_n$ અને $s_n$ એ $n$ પદો ધરાવતી બે ભિન્ન સમાંતર શ્રેણી છે કે જેના માટે $\frac{{{s_n}}}{{{S_n}}} = \frac{{3n - 13}}{{7n + 13}}$ હોય તો $\frac{{{s_n}}}{{{S_{2n}}}}$ ની કિમત મેળવો