આપેલ સમાંતર શ્રેણીમાં બધા પદો ધન પૂર્ણાંક સંખ્યા છે તથા પહેલા નવ પદોનો સરવાળો $200$ કરતાં વધારે અને $220$ કરતાં ઓછો છે. જો શ્રેણીનું બીજું પદ $12$ હોય તો ચોથું પદ મેળવો.
$8$
$16$
$20$
$24$
સમાંતર શ્રેણીના $n$ પદોનો સરવાળો $2n^2 + 5n$ હોય, તો તેનું $n$ મું પદ......... છે.
જો $a,b,c$ સમાંતર શ્રેણીમાં હોય, તો $\frac{1}{{\sqrt b \, + \,\sqrt c }},\,\frac{1}{{\sqrt c + \,\sqrt a }},\,\frac{1}{{\sqrt a \, + \,\sqrt b }}\,\, = \,\,......$
જો સમાંતર શ્રેણીમાં આવેલાં પ્રથમ $n, 2n, 3n$ પદોના સરવાળા અનુક્રમે $S_{1}, S_{2}$ અને $S_{3},$ હોય, તો બતાવો કે $S_{3}=3\left(S_{2}-S_{1}\right)$.
$3$ અને $23$ ની વચ્ચેના ચાર સમાંતર મધ્યક..... છે.
ધારો કે $x_1, x_2 \ldots, x_{100}$ સમાંતર શ્રેણીમાં છે, જ્યાં $x_1=2$ અને તેઓનો મધ્યક $200$ છે.જો $y_i=i\left(x_i-i\right), 1 \leq i \leq 100$ હોય,તો $y_1, y_2, \ldots, y_{100}$ નો મધ્યક
$..........$ છે.