Gujarati
10-2. Parabola, Ellipse, Hyperbola
hard

If any tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ cuts off intercepts of length $h$ and $k$ on the axes, then $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = $

A

$0$

B

$1$

C

$-1$

D

None of these

Solution

(b) The tangent at $(a\cos \theta ,\,b\sin \theta )$ to the ellipse is

$\frac{{(a\cos \theta )x}}{{{a^2}}} + \frac{{(b\sin \theta )y}}{{{b^2}}} = 1$ or $\frac{x}{{(a/\cos \theta )}} + \frac{y}{{(b/\sin \theta )}} = 1$

$\therefore $ Intercepts are, $h = \frac{a}{{\cos \theta }},\,\,k = \frac{b}{{\sin \theta }}$

==> $\frac{{{a^2}}}{{{h^2}}} + \frac{{{b^2}}}{{{k^2}}} = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.