- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
Let $P$ be a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with foci ${F_1}$ and ${F_2}$. If $A$ is the area of the triangle $P{F_1}{F_2}$, then maximum value of $A$ is
A
$ab$
B
$abe$
C
$\frac{e}{{ab}}$
D
$\frac{{ab}}{e}$
(IIT-1994)
Solution

(b) $b\sqrt {{a^2} – {b^2}} $ if $a > b;$
$a\sqrt {{b^2} – {a^2}} $ if $b>a$
Area of $P{F_1}{F_2} = \frac{1}{2}({F_1}{F_2}) \times PL$
$ = \frac{1}{2}(2ac) \times y = ae.\frac{b}{a}\sqrt {{a^2} – {x^2}} $
$A = eb\sqrt {{a^2} – {x^2}} $, which is maximum when $x = 0$.
Thus the maximum value of $A$ is $abe.$
Standard 11
Mathematics