Let $P$ be a variable point on the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ with foci ${F_1}$ and ${F_2}$. If $A$ is the area of the triangle $P{F_1}{F_2}$, then maximum value of $A$ is
$ab$
$abe$
$\frac{e}{{ab}}$
$\frac{{ab}}{e}$
Consider the ellipse $\frac{x^2}{9}+\frac{y^2}{4}=1$. Let $S(p, q)$ be a point in the tirst quadrant such that $\frac{p^2}{9}+\frac{q^2}{4}>1$. I wo tangents are drawn from $S$ to the ellipse, of which one meets the ellipse at one end point of the minor axis and the other meets the ellipse at a point $T$ in the fourth quadrant. Let $R$ be the vertex of the ellipse with positive $x$-coordinate and $O$ be the center of the ellipse. If the area of the triangle $\triangle O R T$ is $\frac{3}{2}$, then which of the following options is correct?
If end points of latus rectum of an ellipse are vertices of a square, then eccentricity of ellipse will be -
The sum of focal distances of any point on the ellipse with major and minor axes as $2a$ and $2b$ respectively, is equal to
Let $C$ be the largest circle centred at $(2,0)$ and inscribed in the ellipse $=\frac{x^2}{36}+\frac{y^2}{16}=1$.If $(1, \alpha)$ lies on $C$, then $10 \alpha^2$ is equal to $.........$
The equations of the directrices of the ellipse $16{x^2} + 25{y^2} = 400$ are