If area of triangle is $35$ $\mathrm{sq}$ $\mathrm{units}$ with vertices $(2,-6),(5,4)$ and $(\mathrm{k}, 4) .$ Then $\mathrm{k}$ is
$12$
$-2$
$12,-2$
$-12,-2$
The roots of the equation $\left| {\,\begin{array}{*{20}{c}}{x - 1}&1&1\\1&{x - 1}&1\\1&1&{x - 1}\end{array}\,} \right| = 0$ are
Statement $1$ : If the system of equations $x + ky + 3z = 0, 3x+ ky - 2z = 0, 2x + 3y - 4z = 0$ has a nontrivial solution, then the value of $k$ is $\frac{31}{2}$
Statement $2$ : A system of three homogeneous equations in three variables has a non trivial solution if the determinant of the coefficient matrix is zero.
If ${a_1},{a_2},{a_3}.....{a_n}....$ are in $G.P.$ then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ is
Find the equation of the line joining $\mathrm{A}(1,3)$ and $\mathrm{B}(0,0)$ using determinants and find $\mathrm{k}$ if $\mathrm{D}(\mathrm{k}, 0)$ is a point such that area of triangle $\mathrm{ABD}$ is $3 \,\mathrm{sq}$ $\mathrm{units}$.
If the system of linear equations $x+y+3 z=0$
$x+3 y+k^{2} z=0$
$3 x+y+3 z=0$
has a non-zero solution $(x, y, z)$ for some $k \in R ,$ then $x +\left(\frac{ y }{ z }\right)$ is equal to