If the system of equations $ax + y + z = 0 , x + by + z = 0 \, \& \, x + y + cz = 0$ $(a, b, c \ne 1)$ has a non-trivial solution, then the value of $\frac{1}{{1\, - \,a}}\,\, + \,\,\frac{1}{{1\, - \,b}}\,\, + \,\,\frac{1}{{1\, - \,c}}$ is :
$-1$
$0$
$1$
none of these
If the system of equations $2x + 3y - z = 0$, $x + ky - 2z = 0$ and $2x - y + z = 0$ has a non -trivial solution $(x, y, z)$, then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k$ is equal to
Let $S_1$ and $S_2$ be respectively the sets of all $a \in R -\{0\}$ for which the system of linear equations
$a x+2 a y-3 a z=1$
$(2 a+1) x+(2 a+3) y+(a+1) z=2$
$(3 a+5) x+(a+5) y+(a+2) z=3$
has unique solution and infinitely many solutions. Then
If $p + q + r = 0 = a + b + c$, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}{pa}&{qb}&{rc}\\{qc}&{ra}&{pb}\\{rb}&{pc}&{qa}\end{array}\,} \right|$ is
Value of $\left| {\begin{array}{*{20}{c}}
0&{x - y}&{x - z} \\
{y - x}&0&{y - z} \\
{z - x}&{z - y}&0
\end{array}} \right|$ is