If diagonals of a parallelogram are $\left( {5\hat i - 4\hat j + 3\hat k} \right)$ and $\left( {3\hat i + 2\hat j - \hat k} \right)$ then its area is

  • A

    $\sqrt {171} \,unit$

  • B

    $\sqrt {72} \,unit$

  • C

    $171\,unit$

  • D

    $72\,unit$

Similar Questions

If $\theta$ is the angle between two vectors $A$ and $B$, then match the following two columns.
colum $I$ colum $II$
$(A)$ $A \cdot B =| A \times B |$ $(p)$ $\theta=90^{\circ}$
$(B)$ $A \cdot B = B ^2$ $(q)$ $\theta=0^{\circ}$ or $180^{\circ}$
$(C)$ $|A+B|=|A-B|$ $(r)$ $A=B$
$(D)$ $|A \times B|=A B$ $(s)$ None

The vector sum of two forces is perpendicular to their vector differences. In that case, the forces

  • [AIPMT 2003]

The area of the parallelogram represented by the vectors $\overrightarrow A = 2\hat i + 3\hat j$ and $\overrightarrow B = \hat i + 4\hat j$ is.......$units$

Consider three vectors $A =\hat{ i }+\hat{ j }-2 \hat{ k }, B =\hat{ i }-\hat{ j }+\hat{ k }$ and $C =2 \hat{ i }-3 \hat{ j }+4 \hat{ k }$. A vector $X$ of the form $\alpha A +\beta B$ ( $\alpha$ and $\beta$ are numbers) is perpendicular to $C$.The ratio of $\alpha$ and $\beta$ is

For any two vectors $\overrightarrow A $ and $\overrightarrow B $, if $\overrightarrow A \,.\,\overrightarrow B = \,\,|\overrightarrow A \times \overrightarrow B |,$ the magnitude of $\overrightarrow C = \overrightarrow A + \overrightarrow B $ is equal to