- Home
- Standard 11
- Physics
If dimensions of critical velocity $v_c$ of a liquid flowing through a tube are expressed as$ [\eta ^x \rho ^yr^z]$ where $\eta ,\rho $ and $r $ are the coefficient of viscosity of liquid, density of liquid and radius of the tube respectively, then the values of $x, y$ and $z$ are given by
$1,1,1$
$1,-1,-1$
$-1,-1,1$
$-1,-1,-1$
Solution
$[ {{v_c}} ] = [ {{\eta ^x}{\rho ^y}{r^z}}] $( {given}
Writing the dimensions of various quantities in
eqn. ($i$), we get
$\left[ {{M^0}L{T^{ – 1}}} \right] = {\left[ {M{L^{ – 1}}{T^{ – 1}}} \right]^x}{\left[ {M{L^{ – 3}}{T^0}} \right]^y}{\left[ {{M^0}L{T^0}} \right]^z}$
$ = \left[ {{M^{x + y}}{L^{ – x – 3y + z}}{T^{ – x}}} \right]$
Applying the principle of homogeneity of
dimensions we get
$,x + y = 0; – x – 3y + z = 1; – x = – 1$
On solving we get
$x = 1,y = – 1,z = – 1$