The equation of a wave is given by$Y = A\sin \omega \left( {\frac{x}{v} - k} \right)$where $\omega $ is the angular velocity and $v$ is the linear velocity. The dimension of $k$ is
$LT$
$T$
${T^{ - 1}}$
${T^2}$
The equation of state of some gases can be expressed as $\left( {P + \frac{a}{{{V^2}}}} \right)\,(V - b) = RT$. Here $P$ is the pressure, $V$ is the volume, $T$ is the absolute temperature and $a,\,b,\,R$ are constants. The dimensions of $'a'$ are
${\mu _0}$ and ${\varepsilon _0}$ denote the permeability and permittivity of free space, the dimensions of ${\mu _0}{\varepsilon _0}$ are
If force $(F)$, length $(L) $ and time $(T)$ are assumed to be fundamental units, then the dimensional formula of the mass will be
Applying the principle of homogeneity of dimensions, determine which one is correct. where $\mathrm{T}$ is time period, $\mathrm{G}$ is gravitational constant, $M$ is mass, $r$ is radius of orbit.
Match List $I$ with List $II$
List $I$ | List $II$ |
$A$ Spring constant | $I$ $(T ^{-1})$ |
$B$ Angular speed | $II$ $(MT ^{-2})$ |
$C$ Angular momentum | $III$ $(ML ^2)$ |
$D$ Moment of Inertia | $IV$ $(ML ^2 T ^{-1})$ |
Choose the correct answer from the options given below