જો કોઈ નળીમાંથી વહેતા પ્રવાહીનો ક્રિટીકલ વેગ $v_c$ ના પરિમાણને $ [\eta ^x,\rho ^y,r^z]$ વડે દર્શાવવામાં આવે છે. જયાં $\eta,\rho $ અને $r $ એ અનુક્રમે પ્રવાહીનો શ્યાનતા ગુણાંક, પ્રવાહીની ઘનતા અને નળીની ત્રિજયા છે, તો $ x,y $ અને $z$ ના મૂલ્યો અનુક્રમે કેટલા હશે?
$1,1,1$
$1,-1,-1$
$-1,-1,1$
$-1,-1,-1$
તરંગ સમીકરણ ${\rm{Y = A \,sin}}\,\omega {\rm{ }}\left( {\frac{x}{v}\,\, - \,\,k} \right)$ દ્વારા આપી શકાય જ્યાં $\omega$ એ કોણીય વેગ અને $v$ એ રેખીય વેગ છે $k$ નું પરિમાણ શું હશે ?
કોઇ પદ્ધતિમાં પ્રકાશનો વેગ $(c)$, ગુરુત્વાકર્ષણ અચળાંક $(G)$ અને પ્લાન્ક અચળાંક $(h)$ ને મૂળભૂત એકમો તરીકે લીધેલા છે. તો આ નવી પદ્ધતિ મુજબ સમયનું પરિમાણિક સૂત્ર શુ થાય?
ઊર્જા ઘનતાને $u=\frac{\alpha}{\beta} \sin \left(\frac{\alpha x}{k t}\right)$ સૂત્ર વડે આપવામાં આવે છે. જ્યાં $\alpha, \beta$ અચળાંકો છે, $x$ એ સ્થાનાંતર, $k$ એ બોલ્ટ્ઝમેન અચળાંક અને $t$ એ તાપમાન છે. $\beta$ નું પરિમાણ ...... થશે.
કોઈ ચોક્કસ ઉદગમથી કણની સ્થિતિઉર્જા અંતર $x$ સાથે $V = \frac{{A\sqrt x }}{{x + B}}$ મુજબ બદલાય છે, જ્યાં $A$ અને $B$ અચળાંકો છે. $AB$ નું પારિમાણિક સૂત્ર શું થાય?
જો ${E}, {L}, {m}$ અને ${G}$ અનુક્રમે ઉર્જા, કોણીય વેગમાન, દળ અને ગુરુત્વાકર્ષણનો અચળાંક હોય, તો સૂત્ર ${P}={EL}^{2} {m}^{-5} {G}^{-2}$ માં રહેલ રાશિ $P$ નું પરિમાણિક સૂત્ર કેવું થાય?