If error in measuring diameter of a circle is $4\%$, the error in radius of the circle would be
$2$
$8$
$4$
$1$
The energy of a system as a function of time $t$ is given as $E(t)=A^2 \exp (-\alpha t)$, where $\alpha=0.2 s ^{-1}$. The measurement of $A$ has an error of $1.25 \%$. If the error in the measurement of time is $1.50 \%$, the percentage error in the value of $E(t)$ at $t=5 s$ is
If a copper wire is stretched to make its radius decrease by $0.1\%$ , then percentage increase in resistance is approximately .......... $\%$
In an experiment, the percentage of error occurred in the measurment of physical quantities $A, B, C$ and $D$ are $1 \%, 2 \%, 3 \%$ and $4 \%$ respectively. Then the maximum percentage of error in the measurement $X,$
where $X = \frac{{{A^2}{B^{\frac{1}{2}}}}}{{{C^{\frac{1}{3}}}{D^3}}}$, will be
We measure the period of oscillation of a simple pendulum. In successive measurements, the readings turn out to be $2.63 \;s , 2.56 \;s , 2.42\; s , 2.71 \;s$ and $2.80 \;s$. Calculate the absolute errors, relative error or percentage error.
An experiment measures quantities $a, b$ and $c$, and quantity $X$ is calculated from $X=a b^{2} / c^{3}$. If the percentage error in $a$, $b$ and $c$ are $\pm 1 \%, \pm 3 \%$ and $\pm 2 \%$, respectively, then the percentage error in $X$ will be