- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
If for a hyperbola the ratio of length of conjugate Axis to the length of transverse axis is $3 : 2$ then the ratio of distance between the focii to the distance between the two directrices is
A
$13 : 4$
B
$4 : 13$
C
$\sqrt {13} :2$
D
$2:\sqrt {13} $
Solution
$\frac{b}{a}=\frac{3}{2},$
Now $\frac{2 a e}{\frac{2 a}{e}}=e^{2}=1+\frac{b^{2}}{a^{2}}$
$=1+\frac{9}{4}=\frac{13}{4}$
Standard 11
Mathematics
Similar Questions
Let $H : \frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$, where $a > b >0$, be $a$ hyperbola in the $xy$-plane whose conjugate axis $LM$ subtends an angle of $60^{\circ}$ at one of its vertices $N$. Let the area of the triangle $LMN$ be $4 \sqrt{3}$..
List $I$ | List $II$ |
$P$ The length of the conjugate axis of $H$ is | $1$ $8$ |
$Q$ The eccentricity of $H$ is | $2$ ${\frac{4}{\sqrt{3}}}$ |
$R$ The distance between the foci of $H$ is | $3$ ${\frac{2}{\sqrt{3}}}$ |
$S$ The length of the latus rectum of $H$ is | $4$ $4$ |
The correct option is: