If for a hyperbola the ratio of length of conjugate Axis to the length of transverse  axis is $3 : 2$ then the ratio of distance between the focii to the distance between the two directrices is

  • A

    $13 : 4$

  • B

    $4 : 13$

  • C

    $\sqrt {13} :2$

  • D

    $2:\sqrt {13} $

Similar Questions

Centre of hyperbola $9{x^2} - 16{y^2} + 18x + 32y - 151 = 0$ is

At the point of intersection of the rectangular hyperbola $ xy = c^2 $ and the parabola $y^2 = 4ax$  tangents to the rectangular hyperbola and the parabola make an angle $ \theta $ and $ \phi $ respectively with the axis of $X$, then

Let $H_1: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ and $H_2:-\frac{x^2}{A^2}+\frac{y^2}{B^2}=1$ be two hyperbolas having length of latus rectums $15 \sqrt{2}$ and $12 \sqrt{5}$ respectively. Let their eccentricities be $e_1=\sqrt{\frac{5}{2}}$ and $e_2$ respectively. If the product of the lengths of their transverse axes is $100 \sqrt{10}$, then $25 e _2^2$ is equal to _____

  • [JEE MAIN 2025]

If the straight line $x\cos \alpha + y\sin \alpha = p$ be a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, then

Let $m_1$ and $m_2$ be the slopes of the tangents drawn from the point $P (4,1)$ to the hyperbola $H: \frac{y^2}{25}-\frac{x^2}{16}=1$. If $Q$ is the point from which the tangents drawn to $H$ have slopes $\left| m _1\right|$ and $\left| m _2\right|$ and they make positive intercepts $\alpha$ and $\beta$ on the $x$ axis, then $\frac{(P Q)^2}{\alpha \beta}$ is equal to $............$.

  • [JEE MAIN 2023]