- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
hard
The equation of common tangents to the parabola ${y^2} = 8x$ and hyperbola $3{x^2} - {y^2} = 3$, is
A
$2x \pm y + 1 = 0$
B
$2x \pm y - 1 = 0$
C
$x \pm 2y + 1 = 0$
D
$x \pm 2y - 1 = 0$
Solution
(a) Tangent to ${y^2} = 8x$
==> $y = mx + \frac{2}{m}$
Tangent to $\frac{{{x^2}}}{1} – \frac{{{y^2}}}{3} = 1$
==> $y = mx \pm \sqrt {{m^2} – 3} $
On comparing, we get
m = $\pm$ $2$ or tangent as $2x \pm y + 1 = 0$.
Standard 11
Mathematics