If from each of the three boxes containing $3$ white and $1$ black, $2$ white and $2$ black, $1$ white and $3$ black balls, one ball is drawn at random, then the probability that $2$ white and $1$ black ball will be drawn is

  • [IIT 1998]
  • A

    $\frac{{13}}{{32}}$

  • B

    $\frac{1}{4}$

  • C

    $\frac{1}{{32}}$

  • D

    $\frac{3}{{16}}$

Similar Questions

If $E$ and $F$ are events such that $P(E)=\frac{1}{4}$,  $P(F)=\frac{1}{2}$ and $P(E$ and $F )=\frac{1}{8},$ find $:$ $P($ not $E$ and not $F)$.

Let $X$ and $Y$ are two events such that $P(X \cup Y=P)\,(X \cap Y).$

Statement $1:$ $P(X \cap Y' = P)\,(X' \cap Y = 0).$

Statement $2:$ $P(X) + P(Y = 2)\,P\,(X \cap Y)$

  • [AIEEE 2012]

If $A$ and $B$ are two independent events, then the probability of occurrence of at least one of $\mathrm{A}$ and $\mathrm{B}$ is given by $1 -\mathrm{P}\left(\mathrm{A}^{\prime}\right) \mathrm{P}\left(\mathrm{B}^{\prime}\right)$

Check whether the following probabilities $P(A)$ and $P(B)$ are consistently defined $P ( A )=0.5$,  $ P ( B )=0.4$,  $P ( A \cap B )=0.8$

$A , B, C$ try to hit a target simultaneously but independently. Their respective probabilities of hitting targets are $\frac{3}{4},\frac{1}{2},\frac{5}{8}$. The probability that the target is hit by $A$ or $B$ but not by $C$ is

  • [JEE MAIN 2013]