तीन बक्सों, जिनमें से एक में $3$ सफेद और $1$ काली, दूसरे में $2$ सफेद और $2$ काली ओर तीसरे में $1$ सफेद और $3$ काली गेंदें रखी हैं, प्रत्येक से एक गेंद यादृच्छिक तरीके से निकाली जाती है। $2$ सफेद और $1$ काली गेंदों को निकाले जाने की प्रायिकता होगी
$13/32$
$1/4$
$1/32$
$3/16$
यदि $E$ व $F$ स्वतंत्र घटनायें इस प्रकार हैं कि $0 < P(E) < 1$ और $0 < P\,(F) < 1,$ तो
दो घटनाओं $A$ और $B$ को परस्पर स्वतंत्र कहते हैं, यदि
एक इलेक्ट्रॉनिक एसेंबली के दो सहायक निकाय $A$ और $B$ हैं। पूर्ववर्ती निरीक्षण द्वारा निम्न प्रायिकताएँ ज्ञात है :
$P ( A$ के असफल होने की $)=0.2$
$P ( B$ के अकेले असफल होने की $)=0.15$
$P ( A$ और $B$ के असफल होने की $)=0.15$
तो, निम्न प्रायिकताएँ ज्ञात कीजिए :
$P ( A$ के अकेले असफल होने की $)$
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
यदि वह अंग्रेज़ी का अखबार पढ़ती है तो उसके हींदी का अखबार भी पढने वाली होने की प्रायिकता ज्ञात कीजिए।
यदि $A$ और $B$ स्वतंत्र घटनाएँ हैं तो $A$ या $B$ में से न्यूनतम एक के होने की प्रायिकता $=1- P \left( A ^{\prime}\right) P \left( B ^{\prime}\right)$