- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
normal
If function $f(x) = x(x + 3) e^{-x/2} ;$ satisfies the rolle's theorem in the interval $[-3, 0],$ then find $C$
A
$0$
B
$1$
C
$-2$
D
$-3$
Solution
$f(x)=\left(x^{2}+3 x\right) e^{-x / 2}$
$f^{\prime}(x)=(2 x+3) e^{-x / 2}-\frac{1}{2}\left(x^{2}+3 x\right) e^{-x / 2}$
$(2 x+3)-\frac{\left(x^{2}+3 x\right)}{2}=0$
$4 x+6-x^{2}-3 x=0$
$x^{2}-x-6=0$
$(x-3)(x+2)=0$
$x=-2,3$
Standard 12
Mathematics
Similar Questions
normal