13.Statistics
hard

यदि पाँच प्रे क्षणों $x _{1}, x _{2}, x _{3}, x _{4}, x _{5}$ का माध्य तथा मानक विचलन क्रमशः $10$ तथा $3$ हो, तो छः प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{5}$ तथा $-50$ का प्रसरण होगा-

A

$509.5$

B

$586.5$

C

$582.5$

D

$507.5$

(JEE MAIN-2019)

Solution

$\sum {x = 50} $

${\left( 3 \right)^2} = \frac{1}{5}\left( {e{x^2} – \frac{{{{\left( {ex} \right)}^2}}}{5}} \right)$

$9 = \frac{1}{5}\left( {\sum {{x^2} – \frac{{2500}}{5}} } \right)$

$\therefore \sum {{x^2} = 545} $

New variable $ = \frac{1}{6}\left( {3045 – \frac{0}{6}} \right) = 507.5$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.