यदि वृत्त $x^2+y^2-2 \sqrt{2} x-6 \sqrt{2} y+14=0$ के व्यासों में से एक व्यास, वृत्त $( x -2 \sqrt{2})^2+( y -2 \sqrt{2})^2= r ^2$ की जीवा है, तो $r^2$ का मान है

  • [JEE MAIN 2022]
  • A

    $15$

  • B

    $70$

  • C

    $18$

  • D

    $10$

Similar Questions

उस वृत्त का केन्द्र, जो कि दिये गये वृत्तों ${x^2} + {y^2} + 2x + 17y + 4 = 0,$ ${x^2} + {y^2} + 7x + 6y + 11 = 0$ तथा ${x^2} + {y^2} - x + 22y + 3 = 0$ को लम्बवत् काटता है, है

उस वृत्त का समीकरण जो वृत्त ${x^2} + {y^2} - 6x + 6y + 17 = 0$ को बाह्यत: स्पर्श करता है एवं जिस पर रेखायें ${x^2} - 3xy - 3x + 9y = 0$ अभिलम्ब हैं, है

वृत्तों ${x^2} + {y^2} + 13x - 3y = 0$ तथा $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ के प्रतिच्छेद बिन्दु से होकर जाने वाले वृत्त का समीकरण, जिसका केन्द्र $13x + 30y = 0$ पर स्थित है, होगा

$C_1$ तथा $C_2$ दो वृत्त एक दूसरे को वाह्य रुप से एक बिंदु $A$ पर स्पर्श करते है। मान लें कि $A B$ वृत्त $C_1$ का ब्यास है। वृत्त $C_2$ का एक कोटिज्य $(secant)$ $B A_3$ है, जो वृत्त $C_1$ को एक बिंदु $A_1(\neq A)$ पर काटती है तथा वृत्त $C_2$ को $A_2$ और $A_3$ पर काटती है। यदि $B A_1=2, B A_2=3$ तथा $B A_3=4$ हैं तो वृत्त $C_1$ तथा $C_2$ की त्रिज्याएँ क्रमशः निम्नलिखित होगी

  • [KVPY 2017]

वृत्त ${x^2} + {y^2} + 4x + 6y + 3 = 0$ व $2({x^2} + {y^2}) + 6x + 4y + C = 0$ लम्बवत् काटेंगे यदि  $C =$