यदि वृत्तों ${x^2} + {y^2} - 6x + 2y + 4 = 0$ व ${x^2} + {y^2} + 2x - 4y - 6 = 0$ के प्रतिच्छेद बिन्दुओं से जाने वाले वृत्त का केन्द्र रेखा $y = x$ पर हो, तो वृत्त का समीकरण है
$7{x^2} + 7{y^2} - 10x + 10y - 11 = 0$
$7{x^2} + 7{y^2} + 10x - 10y - 12 = 0$
$7{x^2} + 7{y^2} - 10x - 10y - 12 = 0$
$7{x^2} + 7{y^2} - 10x - 12 = 0$
दो वृत्त ${x^2} + {y^2} - 2x + 6y + 6 = 0$ तथा ${x^2} + {y^2} - 5x + 6y + 15 = 0$ हैं
यदि एक चर रेखा $3 x+4 y-\lambda=0$ इस प्रकार है कि दो वृत्त $x ^{2}+ y ^{2}-2 x -2 y +1=0$ तथा $x ^{2}+ y ^{2}-18 x -2 y +78=0$ इसके दोनों ओर (opposite sides) हैं, तो $\lambda$ के सभी मानों का समुच्चय निम्न में से कौनसा अन्तराल है
उस वृत्त का समीकरण जिसके अभिलम्ब ${x^2} + 2xy + 3x + 6y = 0$ हैं एवं इसका आकार इतना है कि यह $x(x - 4) + y(y - 3) = 0$ को ठीक अन्दर रखता है, होगा
माना सभी पूर्णांकों का समुच्चय $Z$ है,
$A =\left\{( x , y ) \in Z \times Z :( x -2)^{2}+ y ^{2} \leq 4\right\}$
$B =\left\{( x , y ) \in Z \times Z : x ^{2}+ y ^{2} \leq 4\right\}$ तथा
$C =\left\{( x , y ) \in Z \times Z :( x -2)^{2}+( y -2)^{2} \leq 4\right\}$ है। यदि $A \cap B$ से $A \cap C$ में संबंधों की कुल संख्या $2^{ P }$ है, तो $p$ का मान है
$C_1$ तथा $C_2$ दो वृत्त एक दूसरे को वाह्य रुप से एक बिंदु $A$ पर स्पर्श करते है। मान लें कि $A B$ वृत्त $C_1$ का ब्यास है। वृत्त $C_2$ का एक कोटिज्य $(secant)$ $B A_3$ है, जो वृत्त $C_1$ को एक बिंदु $A_1(\neq A)$ पर काटती है तथा वृत्त $C_2$ को $A_2$ और $A_3$ पर काटती है। यदि $B A_1=2, B A_2=3$ तथा $B A_3=4$ हैं तो वृत्त $C_1$ तथा $C_2$ की त्रिज्याएँ क्रमशः निम्नलिखित होगी