- Home
- Standard 11
- Mathematics
उस वृत्त का समीकरण जो वृत्तों ${x^2} + {y^2} + 13x - 3y = 0$ व $2{x^2} + 2{y^2} + 4x - 7y - 25 = 0$ के प्रतिच्छेद बिन्दुओं एवं बिन्दु $(1, 1)$ से होकर जाता है, है
$4{x^2} + 4{y^2} - 30x - 10y - 25 = 0$
$4{x^2} + 4{y^2} + 30x - 13y - 25 = 0$
$4{x^2} + 4{y^2} - 17x - 10y + 25 = 0$
इनमें से कोई नहीं
Solution
(b) अभीष्ट समीकरण
$({x^2} + {y^2} + 13x – 3y) + \lambda (2{x^2} + 2{y^2} + 4x – 7y – 25) = 0$ है।
जो $(1, 1)$ से गुजरता है
अत: $\lambda = \frac{1}{2}$
अत: अभीष्ट समीकरण $4{x^2} + 4{y^2} + 30x – 13y – 25 = 0$ है।
Similar Questions
अनुच्छेद में दी गई जानकारी के आधार पर सूचियों का उचित मिलान करके प्रश्न का उत्तर दें। माना कि वृत्त (circle) $C_1: x^2+y^2=9$ और वृत्त $C_2:(x-3)^2+(y-4)^2=16$ एक दूसरे को बिन्दुओं $X$ और $Y$ पर काटते हैं। माना लीजिये एक और वृत्त $C _3:( x – h )^2+( y – k )^2= r ^2$ निम्नलिखित शर्तों को संतुष्ट करता है :
$(i)$ $C _3$ का केंद्र (centre) $C _1$ और $C _2$ के केन्द्रों के सरेख (Collinear) है।
$(ii)$ $C _1$ और $C _2$ दोनों $C _3$ के अन्दर हैं और
$(iii)$ $C _3, C _1$ को $M$ और $C _2$ को $N$ पर स्पर्श करता है।
माना कि $X$ और $Y$ से होकर जाने वाली रेखा $C _3$ को $Z$ और $W$ पर काटती है तथा $C _1$ और $C _3$ की एक उभयनिष्ठ स्पर्श रेखा (Common tangent) परवलय $x ^2=8 \alpha y$ की स्पर्श रेखा है।
सूची-$I$($List-I$) में कुछ व्यंजक (expression) हैं जिनका मान नीचे दी गयी सूची-$II$($List-II$) में है
$List-I$ | $List-II$ |
$(I)$ $2 h + k$ | $(P)$ $6$ |
$(II)$ $ZW$ की लंबाई \ $XY$ की लंबाई | $(Q)$ $\sqrt{6}$ |
$(III)$ त्रिभुज $MZN$ का क्षेत्र फल $ZMW$ | $(R)$ $\frac{5}{4}$ |
$(IV)$ $\alpha$ | $(S)$ $\frac{21}{5}$ |
$(T)$ $2 \sqrt{6}$ | |
$(U)$ $\frac{10}{3}$ |
($1$) निम्न में से कौन सा एकमात्र संयोजन गलत है ?
$(1) (IV), (S)$ $(2) (IV), (U)$ $(3) (III), (R)$ $(4) (I), (P)$
($2$) निम्न में से कौन सा एकमात्र संयोजन सही है ?
$(1) (II), (T)$ $(2) (I), (S)$ $(3) (I), (U)$ $(4) (II), (Q)$
Give the answer or quetion ($1$) and ($2$)