The number of values of $x$ for which $sin\,\, 2x + cos\,\, 4x = 2$ is

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    infinite

Similar Questions

The equation $\sin x\cos x = 2$ has

The value of $\theta $ lying between $0$ and $\pi /2$ and satisfying the equation

$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$

  • [IIT 1988]

If $x = \frac{{n\pi }}{2}$ , satisfies the equation $sin\, \frac{x}{2}- cos \frac{x}{2} = 1$ $- sin\, x$ & the inequality $\left| {\frac{x}{2}\,\, - \,\,\frac{\pi }{2}} \right|\,\, \le \,\,\frac{{3\pi }}{4}$, then:

If ${\sec ^2}\theta = \frac{4}{3}$, then the general value of $\theta  $ is

If $\alpha ,\beta ,\gamma $ be the angles made by a line with $x, y$ and $z$ axes respectively so that $2\left( {\frac{{{{\tan }^2}\,\alpha }}{{1 + {{\tan }^2}\,\alpha }} + \frac{{{{\tan }^2}\,\beta }}{{1 + {{\tan }^2}\,\beta }} + \frac{{{{\tan }^2}\,\gamma }}{{1 + {{\tan }^2}\,\gamma }}} \right) = 3\,{\sec ^2}\,\frac{\theta }{2},$ then $\theta =$